文件名称:数学建模线性问题.doc
文件大小:62KB
文件格式:DOC
更新时间:2023-11-02 13:49:53
数学建模
某工厂向用户提供发动机,按合同规定,其交货数量和日期是:第一季末交40台,第二季末交60台,第三季末交80台。工厂的最大生产能力为每季100台,每季的费用f(x)=50x+0.2x^2(元),此处x为该季生产发动机的台数。若工厂生产得多,多余的发动机可移到下季向用户交货,这样,工厂就需支付存储费,每台发动机每季的存储费为4元。问该厂每季应生产多少台发动机,才能既满足交货合同,又使工厂所花费的费用最少(假定第一季度开始时发动机无存货)?