文件名称:基于案例推理预测精炼开始钢水温度 (2012年)
文件大小:438KB
文件格式:PDF
更新时间:2024-06-12 10:51:50
自然科学 论文
针对BP神经网络训练时间长的问题,采用基于案例推理的方法预测精炼开始钢水温度.首先,应用层次分析法确定影响精炼开始钢水温度的各个因素的权值,并使用灰色关联度来计算案例的相似度,克服了传统相似度计算方法在案例信息不完整的情况下元法获取准确结果的缺点.然后,提出一个包含类选、粗选、精选和择优的四步检索方法,大大缩短了检索时间.最后,实验比较了人工神经网络和基于案例推理两种方法,结果表明基于案例推理比人工神经网络具有更高的命中率.