文件名称:基于矩阵变换的文本风格迁移方法
文件大小:1.09MB
文件格式:PDF
更新时间:2024-05-26 05:52:12
自然语言处理 表示学习 文本风格迁移
文本风格迁移一直是自然语言处理(NLP)中的一个研究热点,近年来,随着文本生成方法的发展,越来越多的工作着眼于不成对(non-parallel)文本风格迁移这一任务.这一任务的目标是,利用不包含一一对应句子的两个或多个不同风格的文本集,学习一个迁移模型,实现改变句子的风格的同时保留句子其他的内容.目前针对该任务,已有一些基于生成对抗网络的迁移算法被提出,但是受限于对抗学习本身的训练不稳定,以及对句子的风格和语义的独立性假设本身不合理,这些方法无法高效的学到迁移效果好的模型.在这篇文章中,我们首次从统计学习的角度给出了文本风格的定义—文本集中语义向量的协方差矩阵,在这种新的观点下,文本的风格依赖于所有句子的语义向量.我们随后提出了一种无学习(learning free)迁移方法,我们只需要预训练一个自编码器来得到句子的语义向量,然后对这些向量进行白化和风格化变换,来实现风格迁移.