UFLDL exercise9 Convolution and Pooling

时间:2019-05-04 13:22:19
【文件属性】:

文件名称:UFLDL exercise9 Convolution and Pooling

文件大小:1.48MB

文件格式:ZIP

更新时间:2019-05-04 13:22:19

UFLDL

In this exercise you will use the features you learned on 8x8 patches sampled from images from the STL-10 dataset in the earlier exercise on linear decoders for classifying images from a reduced STL-10 dataset applying convolution and pooling. The reduced STL-10 dataset comprises 64x64 images from 4 classes (airplane, car, cat, dog).


【文件预览】:
cnn_exercise(已完成)
----log.txt(278B)
----feedForwardAutoencoder.m(1KB)
----sparseAutoencoderCost.m(4KB)
----STL10Features.mat(1.4MB)
----cnnExercise.m(9KB)
----cnnPool.asv(1KB)
----softmaxTrain.m(2KB)
----cnnPool.m(2KB)
----softmaxCost.m(1KB)
----cnnExercise.asv(9KB)
----displayColorNetwork.m(1KB)
----minFunc()
--------lbfgsC.mexmac(9KB)
--------lbfgsUpdate.m(614B)
--------autoHess.m(901B)
--------minFunc_processInputOptions.m(4KB)
--------mcholC.mexw64(12KB)
--------ArmijoBacktrack.m(3KB)
--------conjGrad.m(2KB)
--------example_minFunc_LR.m(2KB)
--------precondDiag.m(42B)
--------lbfgsC.mexw32(7KB)
--------autoHv.m(317B)
--------autoGrad.m(807B)
--------lbfgsC.mexmaci(12KB)
--------lbfgsC.c(2KB)
--------mcholC.mexw32(8KB)
--------precondTriuDiag.m(60B)
--------autoTensor.m(870B)
--------lbfgsC.mexa64(8KB)
--------precondTriu.m(51B)
--------lbfgsC.mexw64(10KB)
--------callOutput.m(385B)
--------WolfeLineSearch.m(11KB)
--------rosenbrock.m(1KB)
--------lbfgs.m(924B)
--------dampedUpdate.m(995B)
--------mcholC.mexmaci64(13KB)
--------minFunc.m(43KB)
--------logistic()
--------lbfgsC.mexmaci64(9KB)
--------mcholinc.m(564B)
--------lbfgsC.mexglx(8KB)
--------isLegal.m(107B)
--------taylorModel.m(677B)
--------example_minFunc.m(2KB)
--------polyinterp.m(4KB)
--------mchol.m(1KB)
--------mcholC.c(4KB)
----cnnConvolve.asv(4KB)
----softmaxPredict.m(754B)
----cnnConvolve.m(4KB)

网友评论