Elman神经网络在优化空气预报模式结果中的应用

时间:2024-05-26 06:03:15
【文件属性】:

文件名称:Elman神经网络在优化空气预报模式结果中的应用

文件大小:1.08MB

文件格式:PDF

更新时间:2024-05-26 06:03:15

Elman神经网络 空气质量模式 结果优化 空气质量预测 污染物浓度

空气质量与人们的生活息息相关, 空气质量的预测结果是进行空气质量控制的依据. 因此, 提高空气质量的预测精度是本文研究的重点. CMAQ (Community Multiscale Air Quality modeling system)和CAMx (Comprehensive Air quality Model with extensions)是两种常用的空气质量数值模式, 其工作原理是通过大气物理化学方法模拟污染物传输转化过程, 进而预测空气质量. 空气质量数值模式的输入文件质量会影响到空气质量的预测精度, 为了提高空气质量预测的准确率, 本文提出了一种基于Elman神经网络的优化方法, 该方法在CMAQ和CAMx两种空气质量数值模式基础上利用Elman神经网络优化预测结果. 首先, 运行空气质量模式CMAQ和CAMx得到预测结果, 然后对预测结果进行预处理, 处理后的预测数据和实测数据一起作为Elman神经网络的输入, 进行模型的训练, 最后得到神经网络模型. 通过对测试数据集的验证和分析, 实验结果表明, 该方法表现出比单一空气质量数值模式更高的准确率.


网友评论