文件名称:一种基于FEFS与CBF的网络大流识别算法 (2015年)
文件大小:452KB
文件格式:PDF
更新时间:2024-07-04 01:19:30
工程技术 论文
在网络大流识别中,突发的大量小流会影响大流识别准确度。为此,结合基于频率和大小的流提取(FEFS)算法与基于计数型布鲁姆过滤器(CBF)算法,提出一种新的大流识别算法,即FEFS-CBF算法。该算法采用三级存储结构,运用CBF结构存储小流,将达到过滤阈值的流移至筛选区(LRU)中,当LRU满载时,使用FEFS机制选择一个符合条件的流淘汰,并及时隔离大流。仿真结果表明,该算法的误报率和漏报率均较低,存储开销较小,可以运用于高速网络链路的大流识别中。