文件名称:论文研究-AR预测模型的IMM跟踪算法.pdf
文件大小:624KB
文件格式:PDF
更新时间:2022-10-02 05:01:22
论文研究
针对LOS/NLOS混合条件下对机动目标的鲁棒跟踪问题,提出一种基于AR预测模型的交互式多模型(Interacting Multiple Model,IMM)跟踪算法(ARIMM)。该算法利用AR预测模型对运动状态建模,针对LOS与NLOS条件下观测噪声的分布不同分别使用无迹卡尔曼滤波器(Unscented Kalman Filter,UKF)和改进的无迹卡尔曼滤波器(Robust Unscented Kalman Filter,RUKF),通过IMM方法估计出移动台的位置,利用该位置更新AR模型的参数,使AR模型与真实运动状态更加匹配,实现精确跟踪。仿真结果表明,在LOS/NLOS混合条件下,与传统的UKF和RUKF算法相比,该算法对机动目标跟踪的鲁棒性更好。