文件名称:论文研究-核张量子空间分解EEG特征提取方法研究.pdf
文件大小:673KB
文件格式:PDF
更新时间:2022-09-30 20:34:25
论文研究
针对共空间模式(Common Spatial Patterns,CSP)对源信号和记录的脑电信号之间严格的线性模式的假设关系,充分发挥张量在多维上同时处理的优势,研究了一种核张量子空间分解EEG特征提取方法。首先生成EEG数据的张量,利用带二次等式约束的最小二乘问题解决张量分解问题,并将张量扩展到子空间,减小计算的压力,最后推广到核空间,将数据投影到高维特征空间来增强辨别能力。实验数据采用2005年BCI竞赛III的数据集III_3a,实验结果表明,KTSD方法能够从多类运动想象任务的EEG数据中提取相应的特征,并得到较好分类结果和运行效率。