文件名称:基于人脸图像和脑电的连续情绪识别方法
文件大小:1.86MB
文件格式:PDF
更新时间:2024-05-26 05:42:22
连续情绪识别 迁移学习 多任务卷积神经网络 跨被试型模型 长短时记忆网络
基于多模态生理数据的连续情绪识别技术在多个领域有重要用途, 但碍于被试数据的缺乏和情绪的主观性, 情绪识别模型的训练仍需更多的生理模态数据, 且依赖于同源被试数据. 本文基于人脸图像和脑电提出了多种连续情绪识别方法. 在人脸图像模态, 为解决人脸图像数据集少而造成的过拟合问题, 本文提出了利用迁移学习技术训练的多任务卷积神经网络模型. 在脑电信号模态, 本文提出了两种情绪识别模型: 第一个是基于支持向量机的被试依赖型模型, 当测试数据与训练数据同源时有较高准确率; 第二个是为降低脑电信号的个体差异性和非平稳特性对情绪识别的影响而提出的跨被试型模型, 该模型基于长短时记忆网络, 在测试数据和训练数据不同源的情况下也具有稳定的情绪识别性能. 为提高对同源数据的情绪识别准确率, 本文提出两种融合多模态决策层情绪信息的方法: 枚举权重方法和自适应增强方法. 实验表明: 当测试数据与训练数据同源时, 在最佳情况下, 双模态情绪识别模型在情绪唤醒度维度和效价维度的平均准确率分别达74.23%和80.30%; 而当测试数据与训练数据不同源时, 长短时记忆网络跨被试型模型在情绪唤醒度维度和效价维度的准确率分别为58.65%和51.70%.