文件名称:基于Fisher判别的半监督天体光谱数据特征降维 (2012年)
文件大小:24KB
文件格式:PDF
更新时间:2024-06-11 18:42:58
自然科学 论文
降维是天体光谱数据预处理常用的手段之一,如何利用标号天体光谱数据,克服降维过程中的过分拟合,是提高降维效果的有效途径之一。采用半监督学习,给出了一种天体光谱数据特征降维方法。该方法首先针对具有标号天体光谱数据,建立Fisher判别分析和PCA可变动选择的不确定关系;其次构建其半监督降维的全局最优化形式,通过特征值分解计算降维结果,从而有效地克服了天体光谱降维过程中的过分拟合问题;最后采用高红移类星体和晚型星SDSS天体光谱特征线数据集,实验验证了该方法的有效性。