文件名称:基于MED的滚动轴承故障特征提取方法及其应用 (2013年)
文件大小:244KB
文件格式:PDF
更新时间:2024-06-08 10:46:32
工程技术 论文
为提取微弱的轴承故障信号,研究了一种基于最小熵反褶积(Minimum Entropy Deconvolution,MED)的滚动轴承故障特征提取方法:在利用AR模型去除齿轮啮合产生的确定性信号的基础上,对保留信号进行最小熵反褶积,增强冲击信号。该方法避免了传统轴承故障诊断方法中带通滤波器设计的难题,实车测试表明:与共振解调技术相比,该方法提取的滚动轴承故障特征更加明显,更适合于工程应用。