井下复杂环境人员重识别研究-论文

时间:2024-07-27 18:16:01
【文件属性】:

文件名称:井下复杂环境人员重识别研究-论文

文件大小:2.03MB

文件格式:PDF

更新时间:2024-07-27 18:16:01

煤矿智能监控 井下视频监控 人员智能识别

对煤矿井下视频监控中的人员身份进行智能识别,对提高人员监管效率、减少安全事故发生具有重要意义。受井下环境复杂、视频监控设备性能局限性影响,井下视频监控图像存在分辨率低、遮挡、背景干扰等问题,导致井下人员间差异性较小,人员重识别准确率低。针对上述问题,提出了一种基于通道注意力和距离度量的网络结构,并将其用于井下复杂环境人员重识别。针对监控图像中人员与背景不易区分的问题,在骨干网络中引入通道注意力模块,使其更加关注人员的前景特征而抑制背景信息,并将骨干网络最后一层输出的特征图大小扩大1倍,以获得更多的细粒度特征,丰富人员的特征信息,增强网络对特征的学习能力;在实现不同身份人员分类的基础上,利用人员图像间的绝对距离信息,通过距离度量模块对难以识别的人员图像进行采样和加权处理,增加难样本在反向传播时的权重,使网络更加关注具有判别力的人员特征;联合使用身份损失和距离度量损失优化特征层,使网络提取出更具判别力的人员特征,从而提高重识别准确度。采用Miner〖HT5,6”〗-〖HT5〗CUMT数据集对提出的井下复杂环境人员重识别方法进行验证,结果表明该方法可充分利用井下不同身份人员的关键信息,使识别


网友评论