文件名称:WSI-Classification
文件大小:53KB
文件格式:ZIP
更新时间:2024-06-06 14:05:14
Python
WSI分类 此仓库的目的是扩展TF-Slim的功能,以用于其他项目。 这源自(tensorflow / models)[ ]的提交70c86f2 。 安装 使用 # Build the docker image docker build -t stevenhart/wsi-classification . # initialize the docker container and map volumes # here I map my current working directory to `/data` so I can get my output # I also map `/path/to/img/` so I know where to get my whole slide images docker run -it --rm -v $PWD:/data -v /path/t
【文件预览】:
WSI-Classification-master
----deployment()
--------model_deploy.py(23KB)
--------__init__.py(0B)
----scripts()
--------freeze_graph.py(3KB)
--------calculate_accuracy_on_folder.py(2KB)
--------train_image_classifier.py(25KB)
--------increase_image_count.py(2KB)
--------export_inference_graph.py(5KB)
--------spriter.py(3KB)
--------eval_image_classifier.py(10KB)
--------parse_jpg.py(2KB)
--------patch_extraction.py(6KB)
--------classify_WSI.py(14KB)
--------slim_trainer.py(5KB)
--------create_tf_records.py(7KB)
----classify_image.py(12KB)
----datasets()
--------dataset_utils.py(5KB)
--------spitz.py(4KB)
--------__init__.py(0B)
--------dataset_factory.py(2KB)
----nets()
--------__init__.py(0B)
--------nets_factory.py(3KB)
----README.md(8KB)
----.gitignore(92B)
----preprocessing()
--------preprocessing_factory.py(2KB)
--------spitz_preprocessing.py(2KB)
--------__init__.py(0B)
--------sec_preprocessing.py(1KB)