利用MapReduce平台实现高效并行的频繁子图挖掘* (2014年)

时间:2024-06-09 22:38:05
【文件属性】:

文件名称:利用MapReduce平台实现高效并行的频繁子图挖掘* (2014年)

文件大小:3.98MB

文件格式:PDF

更新时间:2024-06-09 22:38:05

工程技术 论文

频繁子图挖掘是数据挖掘领域的一个重要问题,并且有着广泛的应用。在Hadoop平台上实现了一种基于MapReduce的高效频繁子图挖掘算法Cloud-GFSG(cloud-global frequent subgraph)。该算法基于Apriori思想,在扩展边生成新的子图时,使用已经挖掘出的k-1阶的频繁子图生成k阶的频繁子图。同时,检查是否存在待扩展生成的子图,设定生成的频繁子图表示规则,保证了频繁子图信息的唯一性。较同类算法相比,该算法在挖掘频繁子图时更具通用性,并且在扩展边时避免产生大量的复制图,从


网友评论