文件名称:卷积神经网络压缩中的知识蒸馏技术综述
文件大小:2.21MB
文件格式:PDF
更新时间:2021-10-24 10:57:40
知识蒸馏 GNN
近年来,卷积神经网络(CNN)凭借强大的特征提取和表达能力,在图像分析领域的诸多应用中取得了令人瞩目的成就。但是,CNN性能的不断提升几乎完全得益于网络模型的越来越深和越来越大,在这个情况下,部署完整的CNN往往需要巨大的内存开销和高性能的计算单元(如GPU)支撑,而在计算资源受限的嵌入式设备以及高实时要求的移动终端上,CNN的广泛应用存在局限性。