UNOSAT-AI-Based-Rapid-Mapping-Service

时间:2024-04-08 12:05:47
【文件属性】:

文件名称:UNOSAT-AI-Based-Rapid-Mapping-Service

文件大小:4.37MB

文件格式:ZIP

更新时间:2024-04-08 12:05:47

JupyterNotebook

全卷积神经网络用于合成Kong径雷达图像的快速洪水分割 该GitHub存储库包含Edoardo Nemnni,Joseph Bullock,Samir Belabbes,Lars Bromley全卷积神经网络中描述的机器学习模型,用于在合成Kong径雷达图像中进行快速洪水分割。 @article{UNOSAT-FloodAI, title={Fully Convolutional Neural Network for Rapid Flood Segmentation in Synthetic Aperture Radar Imagery}, author={Nemni, E.; Bullock, J.; Belabbes, S.; Bromley L.}, journal={Remote Sensing}, volume={12}, number={8}, article-n


【文件预览】:
UNOSAT-AI-Based-Rapid-Mapping-Service-master
----Fastai training.ipynb(4.03MB)
----figures()
--------Graphical_Abstract.png(264KB)
--------unet_all_pr_curves.png(199KB)
--------results_plot_34.png(295KB)
--------results_plot_28.png(282KB)
--------fastai_unet_all_pr_curves_2.png(284KB)
--------xnet_all_pr_curves.png(230KB)
----naive_segmentation()
--------UNet.py(3KB)
--------deep_UNet.py(4KB)
--------model_inference.py(6KB)
--------configs()
--------model_training.py(10KB)
--------XNet.py(4KB)
----README.md(11KB)

网友评论