文件名称:基于修正后矩阵分解的最优协方差DOA估计
文件大小:1.31MB
文件格式:PDF
更新时间:2024-05-20 07:14:57
DOA估计 凸优化 矩阵分解
针对传统来波方向(direction-of-arrival,DOA)估计在信号相干、低信噪比与噪声非均匀环境下性能差的问题,基于修正后的矩阵分解,提出一种利用凸优化的协方差矩阵最优DOA估计方法。修正后的矩阵分解方法,解相干的同时克服了孔径损失;然后,利用凸优化,重构出无噪声的协方差矩阵;最后,利用最小化搜索计算出DOA。仿真结果表明,所提算法与矩阵分解(matrix decomposition,MD)算法、基于l1范数的奇异值分解(l1-norm singular vector decomposition,l1-SVD)算法以及基于空间平滑的协方差秩最小化估计(spatial smoothing based covariance rank minimization,SS-CRM)算法比较,能更好地抑制非均匀噪声,且在低信噪比条件下,依然性能良好。