文件名称:基于粒子群算法的Universum SVM参数选择 (2013年)
文件大小:421KB
文件格式:PDF
更新时间:2024-06-04 20:56:23
工程技术 论文
分类器的模型参数对分类结果有直接影l响.针对引入无关样本的Universum SVM算法中模型参数选择问题,采用粒子群优化(particle swarm optimization,PSO)算法对其进行优化.该方法概念简单、计算效率高且受问题维数变化的影响较小,可实现对多个参数同时优选.此外,在PSO中粒子适应度函数的选择是一个关键问题.考虑k遍交叉验证法的估计无偏性,利用交叉验证误差作为评价粒子优劣的适应值.通过舌象样本数据实验,对参数优选前后测试样本识别正确率进行比较,实验结果验证了该算法的有效性.