文件名称:基于多粒度粗糙集的聚类融合方法
文件大小:1.18MB
文件格式:PDF
更新时间:2024-05-20 06:34:49
多粒度粗糙集 聚类融合 大津算法
现有的聚类融合算法从聚类成员的角度出发,若使用全部聚类成员则融合结果受劣质成员影响,对聚类成员进行选择再进行融合则选择的策略存在主观性。为在一定程度上避免这两种局限性,可以从元素的角度出发,提出一种新的聚类融合方法。通过多粒度决策不一致粗糙集来选择一部分类别确定的元素,再利用这部分元素进行聚类融合生成新的划分;多粒度决策不一致粗糙集模型能够刻画多粒度决策过程中属性一致而决策不一致的现象,提出了一种基于多粒度决策不一致的粗糙集模型,并给出了一种聚类融合方法。具体做法是:首先在数据集上多次使用K-means聚类算法,生成论域上的多个粒结构;其次对所有粒结构两两之间求粒间包含度,建立包含度矩阵,对矩阵使用Otsu算法计算阈值,得出多组满足阈值条件的信息粒,求解多粒度决策不一致下近似和上近似;最后分别处理下近似与边界域中元素的类别,从而获得一个经过融合的聚类划分。实验结果表明,该方法能够有效改善聚类的结果,具有较高的时间效率,且算法具有较好的鲁棒性。