文件名称:Federated-tensor-learning
文件大小:12KB
文件格式:ZIP
更新时间:2024-05-01 08:38:48
Python
DPTC 不同的私有矩阵完成和联合张量完成 私有矩阵的不同完成度 运行dpmc.py 输入数据:5000 * 40矩阵,等级= 1,(np.random.random(5000,1)* np.random.random(40,1).T) 结果: 埃普里森 T = 5:100:5 0.1 [1.0762773723506307,0.29707615869863524,0.3123299437864161,0.25530363993603516,0.3107318198622829,0.259253749888942,0.313004881580228,0.2623644329236046,0.18327729774166238,0.17308116223441818,0.17441639360820838,0.16971399345644622,0.164812199164506
【文件预览】:
Federated-tensor-learning-main
----dptcfw.py(12KB)
----t_prod.py(313B)
----dealdata.py(7KB)
----dpmc.py(4KB)
----README.md(10KB)