文件名称:论文研究-广义区间上的泛逻辑自相关系数求解.pdf
文件大小:506KB
文件格式:PDF
更新时间:2022-10-01 18:48:10
论文研究
特征选择是文本分类中一种重要的文本预处理技术,它能够有效地提高分类器的精度和效率。文本分类中特征选择的关键是寻求有效的特征评价指标。一般来说,同一个特征评价指标对不同的分类器,其效果不同,由此,一个好的特征评价指标应当考虑分类器的特点。由于朴素贝叶斯分类器简单、高效而且对特征选择很敏感,因此,对用于该种分类器的特征选择方法的研究具有重要的意义。有鉴于此,提出了一种有效的用于贝叶斯分类器的多类别文本特征评价指标:CDM。利用贝叶斯分类器在两个多类别的文本数据集上进行了实验。实验结果表明提出的CDM指标具有比其它特征评价指标更好的特征选择效果。