文件名称:Udacity---Introduction-To-Machine-Learning-With-Tensorflow:此存储库包含Udacity Nanodegree的项目和微型项目的笔记本
文件大小:19.14MB
文件格式:ZIP
更新时间:2024-06-17 14:48:50
HTML
Udacity-带Tensorflow的机器学习简介 该存储库包含来自Udacity Nanodegree的练习,项目和微型项目的笔记本:Tensorflow机器学习简介。 它包含监督学习,深度学习和无监督学习的代码。 它还包含一个监督学习项目:使用CharityML查找捐助者。
【文件预览】:
Udacity---Introduction-To-Machine-Learning-With-Tensorflow-master
----Regression Metrics()
--------Regression Metrics.html(299KB)
--------Regression Metrics.ipynb(14KB)
--------tests2.py(3KB)
----Spam Classifier()
--------Spam Classifier (Bayesian Inference).ipynb(66KB)
--------README.md(153B)
--------Spam Classifier (Bayesian Inference).html(357KB)
--------SMSSpamCollection(467KB)
----Titanic Survival Exploration With Decision Trees()
--------Titanic Survival Exploration With Decision Trees.html(292KB)
--------titanic_data.csv(59KB)
--------Titanic Survival Exploration With Decision Trees.ipynb(25KB)
----Finding Donors With CharityML()
--------finding_donors.ipynb(180KB)
--------report.html(480KB)
--------visuals.py(5KB)
--------README.md(4KB)
--------census.csv(5.11MB)
--------project_description.md(5KB)
----Gradient Descent()
--------data.csv(2KB)
--------GradientDescent.ipynb(138KB)
--------README.md(109B)
----Neural Networks With TensorFlow()
--------Neural Neworks With TensorFlow And Keras()
--------Classifying Fashion-MNIST Dataset()
--------Loading Image Data()
--------Transfer Learning()
--------Saving And Loading Models()
--------Training Neural Networks()
--------Inference And Validation()
--------Introduction To Neural Networks With TensorFlow()
----Independent Component Analysis()
--------Independent Component Analysis.ipynb(130KB)
----Clustering()
--------Clustering Storyboard Assets()
--------GMM Clustering and Cluster Validation()
--------Identifying Clusters()
--------DBSCAN()
--------KMeans Clustering()
--------Hierarchical Clustering()
--------Feature Scaling()
----Student Admissions()
--------student_data.csv(5KB)
--------StudentAdmissions.html(310KB)
--------StudentAdmissions.ipynb(27KB)
----Classification Metrics()
--------Classification_Metrics.html(360KB)
--------tests.py(5KB)
--------Classification_Metrics.ipynb(61KB)
--------SMSSpamCollection(467KB)
----README.md(380B)
----Principal Component Analysis (PCA)()
--------helper_functions.py(8KB)
--------PCA-1.html(363KB)
--------Interpret PCA Results()
--------test_code.py(5KB)
--------PCA Mini Project()
--------PCA Storyboard Assets()
--------PCA-1.ipynb(91KB)
--------PCA SC()
----Diabetes Case Study()
--------data.csv(3KB)
--------Diabetes Case Study.ipynb(872KB)
--------diabetes.csv(23KB)
--------check_file.py(6KB)
--------Diabetes Case Study.html(1.13MB)