文件名称:论文研究-基于隐藏标签节点挖掘的跨网络用户身份识别.pdf
文件大小:1.47MB
文件格式:PDF
更新时间:2022-08-11 15:40:40
用户身份识别,跨网络,社团聚类,隐藏标签节点
随着各种社交网络不断涌现,以及针对社交网络的安全和商业应用的不断普及,跨网络用户身份识别成为当前的研究热点。针对现有的基于自中心网络环境(Ego-UI)算法对标签节点利用率不高的缺点,提出一种基于隐藏标签节点挖掘的跨网络用户身份识别(HLNM-UI)算法。该算法通过给待匹配节点添加社团聚类信息,将挖掘出的隐藏标签节点加入到自中心网络里,通过对潜在的关系信息加以利用,提高待匹配节点的辨识度,然后利用标签节点找寻最佳匹配,最后通过迭代运算实现全网络所有节点的身份识别。在多个人工随机网络和真实社交网络实验结果表明,提出的算法相比现有的基于自中心网络算法具有更高的召回率和F1值。