文件名称:基于CNN和随机弹性形变的相似手写汉字识别 (2014年)
文件大小:1.64MB
文件格式:PDF
更新时间:2024-07-05 06:49:22
自然科学 论文
针对手写汉字中相似汉字的识别问题,构建了一种卷积神经网络(CNN)模型,并给出了其网络拓扑结构,通过随机弹性形变对样本集进行扩展,以提高模型的泛化性能.相似手写汉字的识别实验结果表明:相对于常规的CNN模型,文中CNN模型的手写汉字识别正确率提高1.66%,特别是对于变形的手写汉字,识别正确率提高12.85%;相对于传统的手写汉字识别方法,文中方法的识别错误率降低36.47%,从而验证了文中识别方法的有效性.