文件名称:论文研究-基于最大隶属度原则的基因表达式编程分类.pdf
文件大小:585KB
文件格式:PDF
更新时间:2022-10-02 16:13:04
论文研究
提出了一种基于最大隶属度原则的基因表达式编程(Gene Expression Programming,GEP)分类方法MDM-GEP。引入模糊集合中的隶属度描述分类的模糊性,在训练集上得到逼近各类别隶属函数的GEP分类器。对于待分类实例,计算其在各模糊集中的隶属度,基于最大隶属度的模糊模式识别原则确定最终归属类,并在三个UCI数据集上对该算法进行了实验。实验结果表明,MDM-GEP不仅具有较好的分类性能,而且有效解决了传统的简单GEP分类方法中存在的拒分区域问题。