文件名称:论文研究-复杂网络上的A(H1N1)型流感传播模型研究.pdf
文件大小:590KB
文件格式:PDF
更新时间:2022-10-01 22:48:45
论文研究
针对城市道路交通状态影响因素多、判别难的特点,在分析K-均值聚类算法和概率神经网络(PNN)的基础上,利用多源检测信息的互补性,提出一种基于快速全局聚类分析的概率神经网络集成模型,通过聚类提高集成网络间的差异度,同时利用主成分分析(PCA)优化概率神经网络结构,仿真实验表明该模型与传统的集成方法Bagging相比,能够利用更简单的网络结构,快速有效地识别出城市道路交通状态,为交通预警和诱导策略的制定提供数据依据。