基于BP神经网络的发动机故障诊断研究

时间:2014-08-25 07:44:48
【文件属性】:

文件名称:基于BP神经网络的发动机故障诊断研究

文件大小:3.16MB

文件格式:NH

更新时间:2014-08-25 07:44:48

故障研究 智能诊断

本文采用振动诊断法,在对汽车发动机进行结构及其典型故障分析,以及对振动信号的时域、频域及小波包进行深入分析的基础上,针对现场实测的EQ6102汽油型发动机机体表面振动信号与气缸盖固紧螺栓振动信号,提出了该型发动机的故障诊断流程,即对所测振动信号进行相关分析,根据发动机机体振动信号的频率特性,确定出故障气缸;然后对该故障气缸进行时域分析,得出峭度参量是汽油发动机故障的敏感时域参数;接着对该故障信号进行频域分析,由随转速增加的频率图及柴油发动机的典型故障定性分析确定出该发动机的故障类型;最后对该故障信号进行小波包分析,确定该种故障的特征频带。通过上述分析确定的发动机故障敏感参量,可以为神经网络等模式识别提供较为准确的特征参量。 关键词:汽车故障诊断;神经网络;系统仿真


网友评论