文件名称:MammographicMassClassification:将乳腺肿块分类为良性或恶性
文件大小:943KB
文件格式:ZIP
更新时间:2024-06-01 15:52:03
machine-learning ipython-notebook JupyterNotebook
乳房X光造影质量分类 客观的 该项目使用不同的机器学习算法(包括支持向量机,逻辑回归,决策树,朴素贝叶斯,人工神经网络等)将乳腺肿块分类为良性或恶性。 为每条曲线绘制ROC曲线,以识别问题的最佳分类算法。 问题 乳房X线照相术是当今可用的最有效的乳腺癌筛查方法。 然而,由于乳房X线照片解释导致的乳房活检的低阳性预测价值导致大约70%的不必要的活检具有良性结果。 为了减少不必要的乳房活检的数量,最近几年提出了几种计算机辅助诊断(CAD)系统,这些系统可以帮助医生决定对乳房X光检查中发现的可疑病变进行乳房活检或进行而是进行短期随访检查。 数据集 已使用UCI储存库中的“乳腺摄影质量”公共数据集。 (来源: : )该数据集可用于根据BI-RADS属性和患者的年龄。 属性数量:6(1个目标字段:严重性,1个非预测性:BI-RADS,4个预测性属性) 属性信息: BI-RADS评估:1到5
【文件预览】:
MammographicMassClassification-master
----MammographicMassClassification.ipynb(1.32MB)
----mammographic_masses.names.txt(3KB)
----README.md(3KB)
----mammographic_masses.data.txt(12KB)
----.gitignore(7B)