文件名称:论文研究-基于情感词向量和BLSTM的评论文本情感倾向分析.pdf
文件大小:999KB
文件格式:PDF
更新时间:2022-08-11 12:24:55
长短期记忆模型,情感倾向分析,自然语言处理,词向量
传统的机器学习方法主要是浅层的学习算法,并不能很好地抽取文本中高层情感信息。针对该问题,提出了一种以组合了语义信息和情感信息的情感词向量作为输入的改进双向长短期记忆模型,通过构建语义和情感双输入矩阵,并在隐藏层加入情感特征抽取模块来增强模型的情感特征表达能力。在数据集上的实验结果表明,与标准的BLSTM模型和传统机器学习模型相比,该模型能够有效提升文本情感倾向分析的效果。