基于最大散度差鉴别准则的自适应分类算法

时间:2014-11-01 14:16:02
【文件属性】:

文件名称:基于最大散度差鉴别准则的自适应分类算法

文件大小:363KB

文件格式:CAJ

更新时间:2014-11-01 14:16:02

最大散度差,大间距线性投影,Fisher鉴别准则,自适应算法,机器学习,人脸识别

首先证明了,当类内散布矩阵非奇异时,特定参数值c0下最大散度差的最优鉴别方向等同于Fisher最优鉴别方向;其次,给出了最大散度差分类算法的识别率随参数C变化的曲线.该曲线通常为一脉冲曲线.随着参数C的增大,识别率也逐渐增大.当参数C增大到co时,识别率达到最大值.另外,以往的研究成果表明:当类内散布矩阵奇异时,最大散度差鉴别准则逐步逼近大间距线性投影准则.而且,随粉参数C的不断增大,最大散度差分类算法的识别率也单调增大并最终稳定到大间距线性投影分类算法的识别率上.为此,我们提出了基于最大散度差鉴别准则的自适应分类算法.新算法可以根据训练样本的特性(类内散布矩阵是否奇异)自动选择恰当的参数C.在UCI机器学习数据库上的6个数据集以及AR人脸图像数据库上的测试结果表明,自适应最大散度差分类算法具有良好的分类性能.


网友评论