Yolo相关论文.rar

时间:2024-09-28 09:00:30
【文件属性】:

文件名称:Yolo相关论文.rar

文件大小:88.01MB

文件格式:RAR

更新时间:2024-09-28 09:00:30

文章 yolo yolox 综述 量化

因为需要,调研了目标检测领域的文章,其中尤以yolo系列为主,并根据其他文章的不同侧重点,进行了简单划分,可省去大量的检索文献的时间!(文章最新截至2021年8月)


【文件预览】:
5综述
----2107.07927.pdf(2.39MB)
----Faster_R-CNN_and_YOLO_based_Vehicle_detection_A_Survey.pdf(2.13MB)
----Fang2021_Chapter_SurveyOnImageObjectDetectionAl (1).pdf(1.07MB)
----Fang2021_Chapter_SurveyOnImageObjectDetectionAl.pdf(1.07MB)
----Invited-2021.pdf(1.15MB)
----2104.11892.pdf(12.47MB)
----A survey of image object detection algorithm based on deep learning.pdf(1.67MB)
----2002.06797.pdf(750KB)
----researchobjectdetection.pdf(1.34MB)
----j.cosrev.2020.100301.pdf(2.44MB)
----118780H.pdf(411KB)
----Liu2020_Article_DeepLearningForGenericObjectDe.pdf(7.5MB)
----1908.03673.pdf(2.23MB)
----1905.05055.pdf(7.03MB)
----Exploring_Deep_Learning-Based_Architecture_Strategies_Applications_and_Current_Trends_in_Generic_Object_Detection_A_Comprehensive_Review.pdf(8.76MB)
3Yolov3&Yolov4&Yolov5结构图
----yolov4()
--------网络结构图_白底()
--------网络结构图_透明底()
----yolov5()
--------网络结构图_白底()
--------网络结构图_透明底()
----yolov3()
--------网络结构图_白底()
--------网络结构图_透明底()
0Yolo的几代
----Redmon_You_Only_Look_CVPR_2016_paper.pdf(1.21MB)
----yolov5地址.txt(37B)
----yolov4.pdf(3.76MB)
----Redmon_YOLO9000_Better_Faster_CVPR_2017_paper.pdf(5.14MB)
----YOLOv3.pdf(2.14MB)
2其他目标检测算法
----Swin Transformer()
--------2103.14030.pdf(1.28MB)
----fcos()
--------Tian_FCOS_Fully_Convolutional_One-Stage_Object_Detection_ICCV_2019_paper.pdf(592KB)
----Effcientdet()
--------Tan_EfficientDet_Scalable_and_Efficient_Object_Detection_CVPR_2020_paper.pdf(755KB)
----centernet()
--------Duan_CenterNet_Keypoint_Triplets_for_Object_Detection_ICCV_2019_paper.pdf(2.88MB)
----nas-fpn()
--------Ghiasi_NAS-FPN_Learning_Scalable_Feature_Pyramid_Architecture_for_Object_Detection_CVPR_2019_paper.pdf(1.38MB)
----Ge_OTA_Optimal_Transport_Assignment_for_Object_Detection_CVPR_2021_paper.pdf(5.93MB)
----Deformable ConvNets v2()
--------Zhu_Deformable_ConvNets_V2_More_Deformable_Better_Results_CVPR_2019_paper.pdf(1.88MB)
----Paddle Anchor Free()
--------2104.13534.pdf(1.67MB)
----trientnet()
--------Li_Scale-Aware_Trident_Networks_for_Object_Detection_ICCV_2019_paper.pdf(903KB)
4量化
----2107.08382.pdf(466KB)
1基于Yolo的改进
----轻量级()
--------SS-YOLO_An_Object_Detection_Algorithm_based_on_YOLOv3_and_ShuffleNet.pdf(736KB)
--------2104.10419.pdf(367KB)
--------Efficient_Yolo_A_Lightweight_Model_For_Embedded_Deep_Learning_Object_Detection.pdf(163KB)
--------1910.01271.pdf(261KB)
--------2107.04829.pdf(375KB)
----多域检测()
--------2106.13939.pdf(4.24MB)
--------2106.01483.pdf(6.48MB)
----迭代()
--------2007.12099.pdf(496KB)
--------yolo-x.pdf(445KB)
--------yolo-r.pdf(3.22MB)
--------2009.05697.pdf(1.94MB)
--------2103.09460.pdf(1.3MB)

网友评论