文件名称:nnmf_sca:非负/稀疏矩阵分解-matlab开发
文件大小:95KB
文件格式:ZIP
更新时间:2024-06-18 10:33:33
matlab
盲源分离 (BSS) 方法的目标是估计混合系统的物理源。 大多数 BSS 模型可以代数表示为将数据矩阵分解为因子矩阵的某种形式: X = 亚行' 没有一些先验知识或没有特定约束,就不可能唯一地估计原始源信号。 然而,通常 X 可以是非负的,并且 X 的相应隐藏分量可能只有在非负时才具有物理意义。 在实践中,非负矩阵分解(NNMF)和数据的稀疏成分分析(SCA)对于潜在的潜在成分进行物理解释可能是必要的。 在标准的 NNMF 中,我们只假设因子矩阵 A 和 B 的非负性,并且与 ICA 不同,我们不假设源是独立的。 为了估计因子矩阵 A 和 B,我们需要量化成本函数,即数据矩阵与 NNMF 模型之间的距离。 最简单的距离度量基于 Frobenius 范数。 这种成本的交替最小化导致交替最小二乘(ALS)算法:在此方法中,在对A进行初始随机初始化之后,迭代执行A固定为B的A和B固定为A的B的
【文件预览】:
NNMF_SCA.zip