文件名称:Matlab Code for Sparse Feature Fidelity (SFF):用于感知图像质量评估的稀疏特征保真度 (SFF) 的 Matlab 代码。-matlab开发
文件大小:2.03MB
文件格式:ZIP
更新时间:2024-06-19 05:56:16
matlab
SFF 是一种用于评估彩色图像感知质量的新算法。 对于质量评估,您可以按如下方式运行“SFF”: 负载('W.mat'); % 加载特征检测器分数 = SFF(refImg, disImg, W); % refImg 和 disImg 分别表示参考图像和失真图像 质量分数介于 0 和 1 之间,其中 1 表示与参考图像的质量相同。 特征检测器 W 是一个大小为 8*192 的矩阵,通过在 data1 上运行 TrainW(18000,8,8) 生成。 W 可用于从图像块中提取特征。 培训代码位于文件夹“\Training”中。 您可以运行“TrainW”来获取特征检测器。 例如: W =火车W(18000,8,8); 在我们的论文中,我们使用了 18000 个大小为 8*8 的样本块,并且只保留了 8 个分量。 为训练阶段提供了两组图像,即 data1 和 data2,这在我们
【文件预览】:
SFF.zip