文件名称:Iterative Methods for Optimization
文件大小:28.11MB
文件格式:PDF
更新时间:2013-06-14 22:25:58
Optimization
This book presents a carefully selected group of methods for unconstrained and bound constrained optimization problems and analyzes them in depth both theoretically and algorithmically. It focuses on clarity in algorithmic description and analysis rather than generality, and while it provides pointers to the literature for the most general theoretical results and robust software, the author thinks it is more important that readers have a complete understanding of special cases that convey essential ideas. A companion to Kelley’s book, Iterative Methods for Linear and Nonlinear Equations (SIAM, 1995), this book contains many exercises and examples and can be used as a text, a tutorial for self-study, or a reference. Iterative Methods for Optimization does more than cover traditional gradient-based optimization: it is the first book to treat sampling methods, including the Hooke–Jeeves, implicit filtering, MDS, and Nelder–Mead schemes in a unified way, and also the first book to make connections between sampling methods and the traditional gradient-methods.Thus, readers can experiment with the algorithms in an easy way as well as implement them in other languages.