条件随机场

时间:2019-06-09 13:53:37
【文件属性】:

文件名称:条件随机场

文件大小:226KB

文件格式:PDF

更新时间:2019-06-09 13:53:37

CRF;概率

We presentconditional random fields, a framework for building probabilistic models to segment and label sequence data. Conditional random fields offer several advantages over hidden Markov models and stochastic grammars for such tasks, including the ability to relax strong independence assumptions made in those models. Conditional random fields also avoid a fundamental limitation of maximum entropy Markov models (MEMMs) and other discriminative Markov models based on directed graphical models, which can be biased towards states with few successor states. We present iterative parameter estimation algorithms for conditional random fields and compare the performance of the resulting models to HMMs and MEMMs on synthetic and natural-language data.


网友评论

相关文章