MIT.Press.Deep.Learning.2016

时间:2019-05-06 09:27:04
【文件属性】:

文件名称:MIT.Press.Deep.Learning.2016

文件大小:77.75MB

文件格式:PDF

更新时间:2019-05-06 09:27:04

Deep Learning

The Deep Learning textbook is a resource intended to help students and practitioners enter the field of machine learning in general and deep learning in particular. Table of Contents Chapter 1 Introduction Part I: Applied Math and Machine Learning Basics Chapter 2 Linear Algebra Chapter 3 Probability and Information Theory Chapter 4 Numerical Computation Chapter 5 Machine Learning Basics Part II: Modern Practical Deep Networks Chapter 6 Deep Feedforward Networks Chapter 7 Regularization Chapter 8 Optimization for Training Deep Models Chapter 9 Convolutional Networks Chapter 10 Sequence Modeling: Recurrent and Recursive Nets Chapter 11 Practical Methodology Chapter 12 Applications Part III: Deep Learning Research Chapter 13 Linear Factor Models Chapter 14 Autoencoders Chapter 15 Representation Learning Chapter 16 Structured Probabilistic Models for Deep Learning Chapter 17 Monte Carlo Methods Chapter 18 Confronting the Partition Function Chapter 19 Approximate Inference Chapter 20 Deep Generative Models


网友评论

  • 逻辑很清楚,循序渐进,逐步深入,是本好教材
  • 这本书很全面的,是MIT的内部学习教材,全英文的