Mastering.Machine.Learning.with.R.

时间:2018-11-24 08:53:40
【文件属性】:

文件名称:Mastering.Machine.Learning.with.R.

文件大小:8.79MB

文件格式:PDF

更新时间:2018-11-24 08:53:40

Machine Learning R Language

Master machine learning techniques with R to deliver insights for complex projects About This Book Get to grips with the application of Machine Learning methods using an extensive set of R packages Understand the benefits and potential pitfalls of using machine learning methods Implement the numerous powerful features offered by R with this comprehensive guide to building an independent R-based ML system Who This Book Is For If you want to learn how to use R's machine learning capabilities to solve complex business problems, then this book is for you. Some experience with R and a working knowledge of basic statistical or machine learning will prove helpful. What You Will Learn Gain deep insights to learn the applications of machine learning tools to the industry Manipulate data in R efficiently to prepare it for analysis Master the skill of recognizing techniques for effective visualization of data Understand why and how to create test and training data sets for analysis Familiarize yourself with fundamental learning methods such as linear and logistic regression Comprehend advanced learning methods such as support vector machines Realize why and how to apply unsupervised learning methods In Detail Machine learning is a field of Artificial Intelligence to build systems that learn from data. Given the growing prominence of R―a cross-platform, zero-cost statistical programming environment―there has never been a better time to start applying machine learning to your data. The book starts with introduction to Cross-Industry Standard Process for Data Mining. It takes you through Multivariate Regression in detail. Moving on, you will also address Classification and Regression trees. You will learn a couple of “Unsupervised techniques”. Finally, the book will walk you through text analysis and time series. The book will deliver practical and real-world solutions to problems and variety of tasks such as complex recommendation systems. By the end of this book, you will gain expertise in performing R machine learning and will be able to build complex ML projects using R and its packages. Style and approach This is a book explains complicated concepts with easy to follow theory and real-world, practical applications. It demonstrates the power of R and machine learning extensively while highlighting the constraints. Table of Contents Chapter 1. A Process for Success Chapter 2. Linear Regression – The Blocking and Tackling of Machine Learning Chapter 3. Logistic Regression and Discriminant Analysis Chapter 4. Advanced Feature Selection in Linear Models Chapter 5. More Classification Techniques – K-Nearest Neighbors and Support Vector Machines Chapter 6. Classification and Regression Trees Chapter 7. Neural Networks Chapter 8. Cluster Analysis Chapter 9. Principal Components Analysis Chapter 10. Market Basket Analysis and Recommendation Engines Chapter 11. Time Series and Causality Chapter 12. Text Mining


网友评论

  • 很棒~要好好学习机器学习了~
  • 入门书籍,内容是英文的
  • 很好的一本书,用来学习python的入门书,推荐
  • 内容是全的。英文版2015年