文件名称:论文研究-一种基于动态惯性权重的鸟群优化算法.pdf
文件大小:1.25MB
文件格式:PDF
更新时间:2022-08-11 14:56:20
鸟群算法, 函数优化, 动态惯性权重, 莱维飞行
鸟群算法(BSA)作为一种新型的元启发式群智能算法,存在易陷入局部最优、收敛速度慢和求解精度低等问题。针对原鸟群算法在求解最优化问题中的不足,提出一种基于动态惯性权重的鸟群优化算法(DBSA)。该算法通过引入非线性动态惯性权重修正鸟群飞行间隔,平衡种群全局搜索与局部搜索能力;在模拟鸟群生产者觅食的过程中引入莱维飞行,替换原算法中生产者的觅食策略提高算法活力和有效性。实验表明改进后的鸟群算法有效提高了算法的收敛速度和寻优精度。