文件名称:spectral hashing
文件大小:996KB
文件格式:PDF
更新时间:2018-09-26 16:19:02
spectral hashing
Semantic hashing seeks compact binary codes of data-points so that the Hamming distance between codewords correlates with semantic similarity. In this paper, we show that the problem of finding a best code for a given dataset is closely related to the problem of graph partitioning and can be shown to be NP hard. By relaxing the original problem, we obtain a spectral method whose solutions are simply a subset of thresholded eigen-vectors of the graph Laplacian. By utilizing recent results on convergence of graph Laplacian eigenvectors to the Laplace-Beltrami eigenfunctions of manifolds, we show how to efficiently calculate the code of a novel data-point. Taken together, both learning the code and applying it to a novel point are extremely simple. Our experiments show that our codes outper-form the state-of-the art.