文件名称:基于量子遗传算法的XML聚类集成
文件大小:324KB
文件格式:DOC
更新时间:2015-01-15 15:36:57
XML文档;K-临近划分;co-occurrence相似度;量子遗传算法;聚类集成
为了改善单一聚类算法的聚类性能,提出一种基于量子遗传算法的XML文档聚类集成解决方法。该方法先利用kNN分类划分k个差异性的聚类成员;其次根据聚类成员的关系获得的内联相似度矩阵,并通过多次分割、向下、向上、双向收缩的QR算法分解特征值对应的特征向量来实现矩阵的维数缩减;然后在映射空间上,用初始聚类中心构造量子遗传算法的初始种群,用量子遗传算法来寻找样本集的最优聚类组合,把每一个样本判别到最优的聚类类别中,从而完成聚类集成。为了验证本文提出的算法,实验结果显示,该聚类集成算法比单聚类算法具有更好的聚类效果。