文件名称:图像雾霾去除方法设计
文件大小:2.55MB
文件格式:DOC
更新时间:2016-01-29 15:39:00
去除图像雾霾
近年来,单幅图像雾霾的去除取得了重大的发展,国内外相关领域的工作者通过成功地使用更好的先验知识和假设,研究出了一些去除图像雾霾的算法。黑色通道先验知识算法(Dark Channel Prior,DCP)首先推算出整体大气光和介质传输率,并通过Softmatting技术优化介质传输率,最后利用大气成像模型得出场景辐射亮度。暗原色先验来自对户外无雾图像数据库的统计规律,它基于经观察得到的这么一个关键事实——绝大多数的户外无雾图像的每个局部区域都存在某些至少一个颜色通道的强度值很低的像素。利用这个先验建立的去雾模型,我们可直接估算雾的浓度并且复原得到高质量的去除雾干扰的图像。对户外各种不同的带雾图像的处理结果表明了DCP算法的巨大作用。同时,作为去雾过程中的副产品,我们还可获得该图像高质量的深度图。