文件名称:论文研究-基于协同进化基因表达式编程的函数发现研究.pdf
文件大小:570KB
文件格式:PDF
更新时间:2022-10-03 02:25:20
论文研究
基因表达式编程(GEP)算法是一种具有强大函数发现能力的新型进化算法。GEP在函数发现时如何确定合适的数值常量对算法的性能具有很大影响。提出了一种基于协同进化基因表达式编程的函数发现算法(GEP-DE),该算法的最大改进在于一种新的常量优化方法:在每一代中将函数发现的过程分为两个阶段:第一阶段,由标准GEP算法结合固定常量集确定函数结构;第二阶段,使用差分进化算法(DE)对第一阶段得出的函数结构的常量进行优化。实验结果表明,GEP-DE算法比重要文献中的常量处理方法其效果有较大提升,并且算法的综合性能也优于最新重要文献提出的GEP算法。