文件名称:论文研究-动态环境中基于风险的模糊策略.pdf
文件大小:1.86MB
文件格式:PDF
更新时间:2022-09-30 05:49:18
论文研究
分析了用人工神经网络模型描述环境时,采用Sigmoid函数作为神经网络作用函数的不足之处,提出采用双曲正切函数作为神经网络的作用函数,使网络更有利于路径优化算法的寻优计算。粒子群优化(Particle Swarm Optimization,PSO)算法具有收敛速度快,需要调节的参数少等优点,但优化过程中容易发生“早熟”收敛,使优化陷入局部极小值。通过引入模拟退火算法、“交叉算子”和“变异算子”,提出了一种新的改进粒子群优化算法(Improved Particle Swarm Optimization,IPSO)来解决AGV全局路径规划问题。仿真结果表明,IPSO具有很强的全局寻优能力,并且收敛速度比PSO快,能够为AGV规划出理想的路径。