python_for_datascience:用于数据科学的 Python

时间:2024-06-19 04:41:21
【文件属性】:

文件名称:python_for_datascience:用于数据科学的 Python

文件大小:17.45MB

文件格式:ZIP

更新时间:2024-06-19 04:41:21

JupyterNotebook

PySpark 散景 - 见 分类模型 用于数据科学的 Python 适用于 R 用户的 Python 笔记本:一种数据科学方法 课堂 接口 命令行 圈地 空闲 木星 烧杯 云 基础 Python 2017 年 12 月修订的 Python 简介 Python 入门 字符串,列表和元组,字典 python中字符串中的变量 在 Pandas 中选择数据 numpy 到熊猫 使用 re.sub 清理数据https://nbviewer.jupyter.org/gist/decisionstats/42b3fc90ae6fa537a19a08017e0336cb 使用 re.search 和 bool 搜索字符串https://nbviewer.jupyter.org/gist/decisionstats/612116b1b8147cfb3808f5ac3c791eb


【文件预览】:
python_for_datascience-master
----_config.yml(26B)
----simple+matplot+graph.ipynb(32KB)
----All+CSV+Files+in+a+Folder.ipynb(2KB)
----multiple+file+concat+in+pandas.ipynb(4KB)
----Web+Scraping+Yelp+with+Beautiful+Soup.ipynb(468KB)
----python+with+postgres (1).ipynb(22KB)
----lambda+functions.ipynb(2KB)
----ML+part+3.ipynb(246KB)
----anscombe+dataset.ipynb(96KB)
----Machine Learning.pdf(4.96MB)
----ML+and+Data+Viz.ipynb(1.33MB)
----test+web+scraping.ipynb(37KB)
----README.md(6KB)
----Logistic Regression.pptx(6.91MB)
----iris2.ipynb(10KB)
----Machine+Learning++Part+1 (1).ipynb(67KB)
----pandas+11.ipynb(117KB)
----python+with+postgres.ipynb(12KB)
----Regression Models v 2.ipynb(1.5MB)
----pandas+data+manipulation.ipynb(89KB)
----linear regression using statsmodel and scikit.ipynb(57KB)
----Machine+Learning++Part+1.ipynb(44KB)
----Classification Models v 2.ipynb(9.75MB)
----Logistic Regression.ipynb(14KB)
----2+Clustering+-K+Means.ipynb(142KB)
----chi+square+test.ipynb(3KB)
----Naive+Bayes.ipynb(35KB)
----LICENSE(11KB)
----data+wrangling+titanic+dataset.ipynb(73KB)
----Bokeh.ipynb(163KB)
----time+series.ipynb(225KB)
----german credit(4KB)
----tpot.ipynb(25KB)
----autosklearn+iris.ipynb(11KB)
----my+first+class+in+python.ipynb(13KB)
----Tweepy.ipynb(11KB)
----titanic forked.ipynb(102KB)
----matplotlib+line+graph.ipynb(29KB)
----matplotlib+cars.ipynb(28KB)
----pyspark.ipynb(17KB)
----Quarterly+Time+Series+of+the+Number+of+Australian+Residents.ipynb(297KB)
----Kmeans+with+scaling.ipynb(138KB)
----decisiontree.ipynb(139KB)
----data+viz.ipynb(1.21MB)
----descriptive+stats+in+Python.ipynb(22KB)
----class+exercise+data+viz.ipynb(146KB)
----text+mining.ipynb(178KB)
----Intro+R+June+2019.ipynb(195KB)
----introductory+python.ipynb(217KB)
----ML+part+2.ipynb(66KB)
----reg+model.ipynb(30KB)
----nltk.ipynb(5KB)
----Splitting+Dataset+in+control+and+validation.ipynb(29KB)
----computer-vision()
--------image.jpeg(122KB)
--------computer vision.ipynb(15KB)
--------FirstDetection.py(548B)
--------imagenew.jpeg(181KB)
----pandas+analysis+1.ipynb(23KB)
----regression.ipynb(26KB)
----data()
--------stats DAP.xlsx(117KB)
--------weather.csv(42KB)
--------stats for data scientists.csv(32KB)
--------RFM part2.xlsx(32KB)
----trial+time+series.ipynb(464KB)
----data+munging+again.ipynb(419KB)
----data+exploration.ipynb(90KB)
----python+intro.ipynb(52KB)
----Hierarchical+Clustering (1).ipynb(85KB)
----data+manipulation.ipynb(246KB)
----scrape+amazon.ipynb(325KB)
----Web+Scraping.ipynb(377KB)
----Python+with+Postgres (3).ipynb(5KB)

网友评论