Algebraic Geometry and Statistical Learning Theory

时间:2013-06-27 16:32:39
【文件属性】:

文件名称:Algebraic Geometry and Statistical Learning Theory

文件大小:1.71MB

文件格式:PDF

更新时间:2013-06-27 16:32:39

Algebraic Geometry Statistical Learning Theory

Sure to be influential, Watanabe's book lays the foundations for the use of algebraic geometry in statistical learning theory. Many models/machines are singular: mixture models, neural networks, HMMs, Bayesian networks, stochastic context-free grammars are major examples. The theory achieved here underpins accurate estimation techniques in the presence of singularities.


网友评论

  • 刚看了前言,觉得值得读
  • 刚看了前言,觉得值得一读
  • 本书通过代数几何中的blow-up思想解决了传统的统计学习无法解决的奇点问题,好!