文件名称:论文研究-消除EMD端点效应的PSO-SVM方法研究.pdf
文件大小:1.18MB
文件格式:PDF
更新时间:2022-10-10 11:31:53
论文研究
论文研究-消除EMD端点效应的PSO-SVM方法研究.pdf, 经验模态分解(empirical mode decomposition, 简称EMD)的端点效应使得EMD分解结果产生严重失真, 为了减小分解过程中产生的端点效应, 将支持向量机(SVM)这一智能算法引入EMD, 提出采用SVM模型解决分解中产生的端点效应问题. 通过支持向量机对其原始数据两端进行延拓, 以获得一个或者多个极大值和极小值. 为了使端点处的延拓变得更加合理, 引入粒子群(PSO)智能算法对支持向量机算法参数进行优化, 使其两个端点处的数据延拓得更加准确, 从而使得三次样条曲线在端点处不会发生大的摆动, 实现EMD分解的固有模态函数(IMF)更加准确可靠. 通过对仿真信号的研究表明, 基于PSO-SVM 方法的延拓方法能够很好地抑制了分解的端点效应.