文件名称:Similarity Search- The Metric Space Approach
文件大小:11.65MB
文件格式:PDF
更新时间:2012-07-31 15:08:19
相似性 搜索 查找 尺度空间方法
Part I Metric Searching in a Nutshell Overview 3 1. FOUNDATIONS OF METRIC SPACE SEARCHING 5 1 The Distance Searching Problem 6 2 The Metric Space 8 3 Distance Measures 9 3.1 Minkowski Distances 10 3.2 Quadratic Form Distance 11 3.3 Edit Distance 12 3.4 Tree Edit Distance 13 3.5 Jaccard’s Coefficient 13 3.6 Hausdorff Distance 14 3.7 Time Complexity 14 4 Similarity Queries 15 4.1 Range Query 15 4.2 Nearest Neighbor Query 16 4.3 Reverse Nearest Neighbor Query 17 4.4 Similarity Join 17 4.5 Combinations of Queries 18 4.6 Complex Similarity Queries 18 5 Basic Partitioning Principles 20 5.1 Ball Partitioning 20 5.2 Generalized Hyperplane Partitioning 21 5.3 Excluded Middle Partitioning 21 5.4 Extensions 21 6 Principles of Similarity Query Execution 22 6.1 Basic Strategies 22 6.2 Incremental Similarity Search 25 7 Policies for Avoiding Distance Computations 26 7.1 Explanatory Example 27 7.2 Object-Pivot Distance Constraint 28 7.3 Range-Pivot Distance Constraint 30 7.4 Pivot-Pivot Distance Constraint 31 7.5 Double-Pivot Distance Constraint 33 7.6 Pivot Filtering 34 8 Metric Space Transformations 35 8.1 Metric Hierarchies 36 8.1.1 Lower-Bounding Functions 36 8.2 User-Defined Metric Functions 38 8.2.1 Searching Using Lower-Bounding Functions 38 8.3 Embedding Metric Space 39 8.3.1 Embedding Examples 39 8.3.2 Reducing Dimensionality 40 9 Approximate Similarity Search 41 9.1 Principles 41 9.2 Generic Algorithms 44 9.3 Measures of Performance 46 9.3.1 Improvement in Efficiency 46 9.3.2 Precision and Recall 46 9.3.3 Relative Error on Distances 48 9.3.4 Position Error 49 10 Advanced Issues 50 10.1 Statistics on Metric Datasets 51 10.1.1 Distribution and Density Functions 51 10.1.2 Distance Distribution and Density 52 10.1.3 Homogeneity of Viewpoints 54 10.2 Proximity of Ball Regions 55 10.3 Performance Prediction 58 Contents ix 10.4 Tree Quality Measures 60 10.5 Choosing Reference Points 63 2. SURVEY OF EXISTING APPROACHES 67 1 Ball Partitioning Methods 67 1.1 Burkhard-Keller Tree 68 1.2 Fixed Queries Tree 69 1.3 Fixed Queries Array 70 1.4 Vantage Point Tree 72 1.4.1 Multi-Way Vantage Point Tree 74 1.5 Excluded Middle Vantage Point Forest 75 2 Generalized Hyperplane Partitioning Approaches 76 2.1 Bisector Tree 76 2.2 Generalized Hyperplane Tree 77 3 Exploiting Pre-Computed Distances 78 3.1 AESA 78 3.2 Linear AESA 79 3.3 Other Methods 80 4 Hybrid Indexing Approaches 81 4.1 Multi Vantage Point Tree 81 4.2 Geometric Near-neighbor Access Tree 82 4.3 Spatial Approximation Tree 85 4.4 M-tree 87 4.5 Similarity Hashing 88 5 Approximate Similarity Search 89 5.1 Exploiting Space Transformations 89 5.2 Approximate Nearest Neighbors with BBD Trees 90 5.3 Angle Property Technique 92 5.4 Clustering for Indexing 94 5.5 Vector Quantization Index 95 5.6 Buoy Indexing 97 5.7 Hierarchical Decomposition of Metric Spaces 97 5.7.1 Relative Error Approximation 98 5.7.2 Good Fraction Approximation 98 5.7.3 Small Chance Improvement Approximation 98 5.7.4 Proximity-Based Approximation 99 5.7.5 PAC Nearest Neighbor Search 99 x SIMILARITY SEARCH Part II Metric Searching in Large Collections of Data Overview 103 3. CENTRALIZED INDEX STRUCTURES 105 1 M-tree Family 105 1.1 The M-tree 105 1.2 Bulk-Loading Algorithm of M-tree 109 1.3 Multi-Way Insertion Algorithm 112 1.4 The Slim Tree 113 1.4.1 Slim-Down Algorithm 114 1.4.2 Generalized Slim-Down Algorithm 116 1.5 Pivoting M-tree 118 1.6 The M