MOEA-NSGA-II

时间:2015-04-26 11:14:59
【文件属性】:

文件名称:MOEA-NSGA-II

文件大小:370KB

文件格式:ZIP

更新时间:2015-04-26 11:14:59

多目标优化 遗传算法 MOEA NSGA

Conventional optimization algorithms using linear and non-linear programming sometimes have difficulty in finding the global optima or in case of multi-objective optimization, the pareto front. A lot of research has now been directed towards evolutionary algorithms (genetic algorithm, particle swarm optmization etc) to solve multi objective optimization problems. Here in this example a famous evolutionary algorithm, NSGA-II is used to solve two multi-objective optmization problems. Both problems have a continuous decision variable space while the objective space may or may not be continuous. The first example, MOP1, has two objective functions and six decision variables, while the second example, MOP2, has three objective functions and twelve decision variables. nsga_2.m is the main function (infact it is mainly a script). Kindly read the accompinied pdf file and also published M-files.


【文件预览】:
license.txt
MOEA-NSGA-II
----plot_objective.m(476B)
----non_domination_sort_mod.m(5KB)
----evaluate_objective.m(969B)
----initialize_variables.m(2KB)
----NSGA_2.pdf(365KB)
----html()
--------tournament_selection.html(6KB)
--------non_domination_sort_mod.html(11KB)
--------genetic_operator.html(10KB)
--------initialize_variables.html(4KB)
--------crowding_distance.html(5KB)
--------nsga_2.html(13KB)
--------replace_chromosome.html(6KB)
----nsga_2.m(6KB)
----genetic_operator.m(5KB)
----tournament_selection.m(3KB)
----replace_chromosome.m(3KB)
----crowding_distance.m(3KB)

网友评论

  • 为什么没有示例,不会啊
  • 多目标优化的两种常用框架
  • 多目标优化的两种常用框架,挺实用的!
  • 关于非支配排序遗传算法(NSGA)处理多目标最优解的问题,有几个实例有助于理解,不过不太好理解,谢谢分享
  • 居然是matlab的,不是我想要的!!!