文件名称:基于改进U-Net的宫颈细胞核图像分割
文件大小:1.34MB
文件格式:PDF
更新时间:2024-05-26 05:39:55
深度学习 卷积神经网络 改进型U-Net 宫颈细胞核分割 图像信息处理
原始的U-Net采用跳跃结构结合高低层的图像信息, 使得U-Net模型有良好的分割效果, 但是分割结果在宫颈细胞核边缘依然存在分割欠佳、过分割和欠分割等不足. 由此提出了改进型U-Net网络图像分割方法. 首先将稠密连接的DenseNet引入U-Net的编码器部分, 以解决编码器部分相对简单, 不能提取相对抽象的高层语义特征. 然后对二元交叉熵损失函数中的宫颈细胞核和背景给予不同的权重, 使网络更加注重细胞核特征的学习. 最后在池化操作过程中, 对池化域内的像素值分配合理的权值, 解决池化层丢失信息的问题. 实验证明, 改进型U-Net网络使宫颈细胞核分割效果更好, 模型也越鲁棒, 过分割和欠分割比率也越少. 显然, 改进型U-Net是更有效的图像分割方法.