论文研究-基于LFM矩阵分解的推荐算法优化研究.pdf

时间:2022-10-01 07:59:20
【文件属性】:

文件名称:论文研究-基于LFM矩阵分解的推荐算法优化研究.pdf

文件大小:501KB

文件格式:PDF

更新时间:2022-10-01 07:59:20

论文研究

在推荐系统中,基于矩阵分解的推荐算法是目前的研究热点之一,然而普通矩阵分解算法的推荐精确度偏低,为了改善该问题,以矩阵分解算法中的潜在因子模型(LFM)优化为研究对象,分析LFM中两种基础推荐算法在寻优速率与推荐精度上的不足,然后提出两种改进算法:带冲量的批量学习算法和混合学习算法,最后通过实验数据测试,对比了不同算法的推荐效果,结果证明改进算法的性能更优。


网友评论